

What do we know?

- Something is accountable for EWSB
 - SM allows for Higgs mechanism
 - Manifests a heavy spin-0 boson
- SM predicts most properties and decay channels of Higgs
 - but **not** its mass
- Experimental evidence so far:
 - Direct searches at LEP exclude m_H<114 GeV/c²
 - Direct searches at Tevatron beginning to exclude around m_H=160 GeV/c²
 - Indirect constraints from precision measurements (m_W and m_t) prefer low mass Higgs: m_H<157 GeV/c² (186 GeV when including LEP limit)

What do we look for?

Separate according to decays:

- Low mass [*m*_H<135 GeV]
 - Decays dominated by H→bō
 - $gg \rightarrow H \rightarrow b\bar{b}$ difficult to see experimentally
 - Rely on primarily on associated production with W or Z
 - This talk
- High mass [m_H >135 GeV]:
 - Decays dominated by H→W+W-
 - Easiest to look for leptonic decays of Ws
 - Considerable contribution from VBF and associated production
 - Marc's talk (next)

Experimental setup: Tevatron

- 1.96 TeV ppbar collider
 - Highest energy collider in the world
- Excellent accelerator performance
 - Quick startup after summer shutdown
 - Inst. lum. exceeding 3×10^{32} cm⁻²s⁻¹
 - Over 7 fb⁻¹ delivered to each experiment
 - Results shown today use ≤ 5.4 fb⁻¹
- Every bit of data helps
- Many thanks to the Fermilab accelerator division!

Experimental setup: CDF and DØ

Low mass Higgs search strategy

- Identified leptons
- Invisible leptons
 - WH→(I)vbō, ZH→vvbō
- 1. Identify W/Z: leptons (e,μ)
- Maximize lepton coverage
 - e.g. leptons not in fiducial region of calorimeter

- 2. Identify Higgs decay: jets
- Develop NN and other advanced tagging algorithms
- Develop multivariate jet corrections
- 3. Reduce backgrounds
- Multijet backgrounds particularly difficult
 - Model using data
 - Use NN to separate

Signal extraction

- Expected signals too small for counting experiments
- Don't want to rely on single kinematic distribution
- Exploit all possible information in an event: multivariate discriminants
 - Output single variable that looks at all event kinematics
 - Artificial Neural Networks (NN)
 - Boosted Decision Trees (BDT)
 - Matrix Element (ME) probabilities
- Can we discover rare processes using these techniques? Yes
 - Single top
 - Hadronic decays of dibosons: very similar final states to low mass Higgs

- Fully reconstructible final state
- Backgrounds primarily Z+jets, diboson and ttbar (little QCD)
- Very small signal rate
- Expand lepton selection to maximize acceptance
- Select events with 2 leptons, 2 jets, at least one of which is b-tagged
- Can use NN to improve dijet mass resolution

250

300

350

 M_{ii} (GeV/ c^2)

200

200

50

100

- CDF: 2D NN (ZH vs ttbar, ZH vs Z+jets), include leading order ME as input
 - 4.1 fb⁻¹ Observe (expect) 5.9 (6.8)×σ_{SM} @95% CL for m_H=115 GeV
- DØ: boosted decision tree
 - 4.2 fb⁻¹ Observe (expect) 9.1 (8.0)×σ_{SM} @95% CL for m_H=115 GeV

WH→Nbō

- Largest cross section of VH states with identified lepton
- Select events with high-p_T electron or muon, 2 or 3 jets at least one with a b-tag, and large missing E_T
- As with ZH, can use NN to improve dijet mass resolution
- Dominant backgrounds are W+jets, QCD multijet and top
- Split sample up according to number of jets and tags

WH→/vbb̄ results

- CDF: ME (2 and 3-jet events)
 - 4.3 fb⁻¹ Observe (expect) 6.6 (4.1)×σ_{SM} @95% CL for m_H=115 GeV
- CDF: NN (2-jet events)
 - 4.3 fb⁻¹ Observe (expect) 5.3 (4.0)×σ_{SM} @95% CL for m_H=115 GeV
- DØ: NN (2 and 3-jet events)
 - 5.0 fb⁻¹ Observe (expect) 6.9 (5.1)×σ_{SM} @95% CL for m_H=115 GeV

$VH \rightarrow b\bar{b} + \not\!\!E_T$

- Includes contributions from
 - WH→(I)vb5
 - ZH→vvbō
- Select events with large missing E_T and jets with at least 1 b-tag
- Exclude identified leptons
 - Ensures independent channel from other VH searches
- Backgrounds by source of missing E_T
 - Instrumental: QCD multijet
 - Real: W/Z+jets, top, diboson
- Large QCD background drives analysis design
 - Model using data
 - Use NN (CDF), BDT(DØ) to separate QCD background

- CDF: neural net
 - 3.6 fb⁻¹ Observe (expect) 6.1 (4.2)×σ_{SM} @95% CL for m_H=115 GeV
- DØ: boosted decision tree
 - 5.2 fb⁻¹ Observe (expect) 3.7 (4.6)×σ_{SM} @95% CL for m_H=115 GeV

gqbb final state

- Search for VH→qqbb as well as Vector Boson Fusion (VBF)
- Good
 - Has the largest signal yield of low mass searches
 - Fully reconstructable final state
- Ugly
 - Massive QCD multijet background
- Select events with ≥4 jets and 2 b-tags
- Use NN to separate QCD from Higgs

4 fb⁻¹ Observe (expect) 10.4 (19.9)×σ_{SM} @95% CL for m_H=120 GeV

WH→ tvbb and ttqq final state

- WH→TVbb̄ complements WH→IVbb̄
 - Select events with 2 b-jets, missing E_T and hadronic τ
 - Use BDT as discriminant
 - 4.0 fb⁻¹ Observe (expect) 14.1 (22.4)×σ_{SM}
 @95% CL for m_H=115 GeV
- Look for TTqq to catch remaining tau final states
 - Includes events from ZH→TTbb, HZ→TTqq,
 HW→TTqq, VBF, and gg→H→TT+jets
 - Require one hadronic τ and one decaying to $\mu \nu_{\mu} \nu_{\tau}$
 - Use BDT as discriminant
 - 4.9 fb⁻¹ Observe (expect) 27.0 (15.9)×σ_{SM}
 @95% CL for m_H=115 GeV

- Comprehensive search for low mass SM Higgs at CDF and DØ
 - Cover all associated production channels
 - High mass $H \rightarrow W^+W^-$ search also contributes at low mass
- Combined CDF+DØ sensitivity at m_H=115 GeV is now 1.78×σ_{SM}
 - Observed limit of 2.70×σ_{SM} at m_H=115 GeV
 - See Marc's talk (next) for latest combination and future projections for Tevatron Higgs searches